What is IPv4

What is IPv4? Here’s all you need to know

The short answer to the question, “What is IPv4?”, is that it’s the fourth version of the internet protocol. IP, which stands for internet protocol, is the internet’s principal set of rules for communications.

In place for more than 35 years, the U.S. Department of Defense first deployed it on its ARPANET (Advanced Research Projects Agency Network) in 1983.

Internet protocol version 4, IPv4, is also at a crossroads: its global IP address supply is exhausted. The internet is undergoing a gradual transition to the next version, IPv6, but not without challenges.

In this glossary entry, we’ll explore the basic components of the internet and how they work together, examine the fourth internet protocol version and its modern-day shortcomings, and touch on its IPv6 successor.

Before IPv4, a little more on how the internet works

More details on IP

IP is part of an internet protocol suite, which also includes the transmission control protocol. Together, these two are known as TCP/IP. The internet protocol suite governs rules for packetizing, addressing, transmitting, routing, and receiving data over networks.

IP addressing is a logical means of assigning addresses to devices on a network. Each device connected to the internet requires a unique IP address.

Most networks that handle internet traffic are packet-switched. Small units of data, called packets, are routed through a network. A source host, like your computer, delivers these IP packets to a destination host, such as a server, based on IP addresses in packet headers. Packet-switching allows many users on a network to share the same data path.

An IP address has two parts—-one part identifies the host, such as a computer or other device. And the other part identifies the network it belongs to. TCP/IP uses a subnet mask to separate them.

How DNS fits in the picture

DNS, or domain name system, is the phone book of the internet. It translates domain names that we easily remember, like bluecatnetworks.com, into IP addresses like, which are the language of the internet.

DNS allows computers, servers, and other networked devices, each with their unique IP addresses, to talk to each other. And it gets users to the website they’re looking for.

When you use an IPAM solution in isolation, integration with DNS and DHCP gets dicey.

Now, exactly what is IPv4?

IP (version 4) addresses are 32-bit integers that can be expressed in hexadecimal notation. The more common format, known as dotted quad or dotted decimal, is x.x.x.x, where each x can be any value between 0 and 255. For example, is a valid IPv4 address.

IPv4 still routes most of today’s internet traffic. A 32-bit address space limits the number of unique hosts to 232, which is nearly 4.3 billion IPv4 addresses for the world to use (4,294,967,296, to be exact).

Today, we’ve run out

Think about it: How many connected devices are in your household?

The median American household has five devices, including smartphones, computers and laptops, tablets, and streaming media devices. That doesn’t even include the range of devices that fall under the internet of things (IoT) category, such as connected thermostats, smart speakers, and doorbell cameras.

So, in today’s world of ultra-connected computer networks, where every stationary and mobile device now has an IP address, it turns out that 4.3 billion of them isn’t nearly enough.

In 2011, the Internet Assigned Numbers Authority (IANA), the global coordinator of IP addressing, ran out of IPv4 address space to allocate to regional registries. And regional registries have since depleted those allocations.

In 2015, the American Registry for Internet Numbers (ARIN), the regional registry for North America, began turning down requests for new blocks of numbers on IPv4. ARIN now has a waiting list for IPv4 space.

Network Rising

Are you drowning in network complexity?

Learn more

Don’t Rely on Mr.DNS

DNS a single point of failure on your network?

Learn more

Best Practices Guide

Align your DDI architecture to business needs

Learn more

Additional limitations

Besides running out of address space, the IPv4 addressing system has some additional downsides:

About 18 million addresses were set aside for private addressing, drawn from a range known as RFC 1918. Most organizations use private addresses on internal networks. However, devices on these local networks have no direct path to the public internet.

To access the public internet, devices with private addresses require a complex and resource-intensive workaround called network address translation (NAT).

Furthermore, North America got the lion’s share of IPv4 address allocations. As a result, entities in Asia-Pacific and elsewhere, where internet use has exploded, have purchased large chunks of IP space on the gray market. This has broken up contiguous ranges of IP addresses and made it more complicated to route internet traffic.

To replace IPv4, enter IPv6

To address this problem, the internet is undergoing a gradual transition to IPv6. The latest version of the internet protocol, IPv6 internet addressing, moves from 32 bits to a 128-bit address space, with both letters and numbers in identifiers (for example, 2002:db8::8a3f:362:7897). IPv6 has 2128 uniquely identifying addresses, which is about 340 undecillion or 340 billion billion billion.

This version of IP has some obvious advantages, the primary one being that it’s a lot more space. With IPv6, a single network can have more IPv6 addresses than the entire IPv4 address space.

It seems easy enough, but IPv4 and IPv6 are not directly interoperable. IPv6 is not the easiest protocol to walk into. It’s a big undertaking fraught with challenges. And when it comes to transitioning to IPv6 DNS, the BlueCat platform is at the ready to help.


Moving to IPv6 DNS may seem daunting. Like most enterprises, you’re probably trying to remain on IPv4 as long as possible. But if you’re making the jump to IPv6, BlueCat’s platform is ready to help cushion your landing.


Reports surfaced of the very first IPv6 DDoS attack in early 2018. But wasn’t IPv6 designed with security in mind? It’s an important reminder: Incorporating IPv6 into your network security model is critical.

Related content

Product Roadmap Webinar Series

BlueCat’s Product Management team is hosting three in-depth roadmap sessions on what the future looks like for your network with BlueCat solutions.

Learn more
eBook: Network Rising

The gap between what the network team can deliver and what end-users need continues to widen. You need a back-end DNS that supports all your business…

Learn more
eBook: Common Challenges with Microsoft DNS

Microsoft Active Directory is a de-facto standard across organizations of all sizes for directory services which requires DNS to function. Many…

Learn more
Cloud Discovery & Visibility

BlueCat’s Cloud Discovery and Visibility gives you full insight into what’s happening in your hybrid cloud environment, all in real time.

Learn more